Numpy Operations
Numpy Array Creation -
- X = np.array[[10,20,30,40]]
- X = np.zeros(10)
- X= np.ones(10)
- X = np.empty (10)
- X=np.arange([1,11]) ---- will create 10 element array starting from element=1 to 10
Array Creation using data type
- X = np.array([10,20,30,40], dtype = np.floar64)
Changing data type
- X = X.astype(np.int32)
Arithmetic operation
- X = np.array([[10,20,30,40],[50,60.70,80])
Indexing and slicing
- One dimension
- X[1] ----- Will return X[1]
- X[2:4] ------ will return X[2[, X[3]
- Multiple dimension
- X[0] ------- Will return 0th row
- X[0][1] -- Will return 0th row and 1st column.
Propagation and Broadcast
- X[2:4] = 100 ---------- X[2], X[3] will be assigned 100.
Row slicing & Column slicing using booleans
- Y = np.array(["True", "True", "False", "False", "True"]),
- X[Y=="True"] -- row slicing
- X[:, Y="True"] -- column slicing
Manipulating all elements
- X = X[X<0] = 0 --- Any element less than 0 will be assigned a value = 0
Fancy Indexing
- Get rows
- X[1]
- X[[1,3,5]]
- Get Columns
- X[:, 1:4]
- X[:, [1,4,5]]
- Get Multiple rows and columns
- X[[1,3,4], [2,4,5]]
Fancy Indexing using pipe
- X[[1,4,5]][:, [0,1]]
Reshape
- X.reshape(8,4)
- X.transpose()
Universal Function
- One input
- np.sqrt(X)
- np.exp(X)
- Multiple Input
- np.maximum(X,Y)
- np.add(X,Y)
- Finding NAN value
- np.nan(X) -- Ouput will be [False, False,..., True] -- in this form. -- TRUE will indicate corresponding value in NAN.
- Any element has NAN value
- np.nan(X).any()
Vectorization
- Mesh Grid
- Xaxis, Yaxis = np.meshgrid(X,Y)
- np.where
- K = np.where(Z, X, Y)
- K = np.where(X>0, Y ,Z )
- np.where(X>99, X, 100) -> combination of scaler and numpy array
Statistical Functions
- np.mean(X) --- Mean of all element of the array.
- np.std(X)
- np.sum()
- X.mean(axis=0) -- Mean of each column
- X.mean(axis=1) -- Mean of each row.
Boolean arrays
- X.any() - IF any value is TRUE
- X.sum() - Count of all TRUE value
- X.all() - If all value is TRUE
- X>0 -> returns a boolean array.
Sorting
- np.sort(X, axis = None) -- sort all element of array and return one dimensional array
- np.sort(X, axis = 0) - Column wise sorting
- np.sort(X, axis = 1 ) - Row wise sorting
Remove duplicates
- np.unique(X) -- removes the duplicates
Check common values between two array
- np.in1d(X,Y) -.. returns bollean array with TRUE indicating common value
- np.union1d(X,Y) - returns union of X and Y
Saving to a file
Saving one array in one file
- np.save("OneDimension", X)
- np.load("OneDimension.npy")
Save multiple array using key/value
- np.savez("Onedimension", key1=X, key2=Y)
- k = np.load("Onedimension")
- k[key1], k[key2]
Other functionality
- np.dot(X,Y)
- k= inv(y) ---- from numpy.linalg import inv
0 comments:
Post a Comment