Basic line plot
%matplotlib notebook -- to create visualization in jupyter notebook
import matplotlib.pyplot as plt
import numpy as np
X = np.arange(10)
plt.plot(X)
Create figure and Plot in two lines
1. Create Figure
fig = plt.figure()
2. Create Plot and add plot to figure
ax1 = fig.add_subplot(2,2,1) --- 2 rows, 2 column and we are selecting 1st plot.
Without creating subplot ( plt.plot)
fig = plt.figure()
plt.plot(np.random.rand(50), 'k-') -- It will go to rightmost bottom.
Creating figure and axis in the same line.
fig, axes = plt.subplots(2,3)
axes[0,1].hist()
Creating same X and Y axis for all subplots.
fig, axes = plt.subplots(2,3, sharex=True, sharey = True)
Remove space between subplots.
fig, axes = plt.subplots(2,3, sharex=True, sharey = True, wspace =0, hspace=0)
Adding color and linestyle.
fig, axes = plt.subplots(2,3, sharex=True, sharey = True, wspace =0, hspace=0, linestyle ="--" , color ='r')
fig, axes = plt.subplots(2,3, sharex=True, sharey = True, wspace =0, hspace=0, "r--") -- short form.
Add Marker
fig, axes = plt.subplots(2,3, sharex=True, sharey = True, wspace =0, hspace=0, linestyle ="--" , color ='r', marker = "o")
Connecting 2 dots
fig, axes = plt.subplots(2,3, sharex=True, sharey = True, wspace =0, hspace=0, linestyle ="--" , color ='r', marker = "o", drawstyle="steps-post") -- steps-pre/steps-mid/steps
Add label
fig, axes = plt.subplots(2,3, sharex=True, sharey = True, wspace =0, hspace=0, linestyle ="--" , color ='r', marker = "o", drawstyle="steps-post", label="line")
X and Y axis label
fig = plt.figure()
ax1= fig.add_subplot(1,1,1)
ticks = ax1.set_xticks([0,10,20,30])
labels = ax1.set_xticklabels(["zero,", "ten","twnety","thirty"])
ax1.plot()
Change orientation and size of the X labels
fig = plt.figure()
ax1= fig.add_subplot(1,1,1)
ticks = ax1.set_xticks([0,10,20,30])
labels = ax1.set_xticklabels(["zero,", "ten","twnety","thirty"], rotation = 90, fontsize="large")
ax1.plot()
X-axis label, Title
ax1.set_xlabel("Xlabels")
ax1.set_title("Title)
Plots
veritical barplot
ax1.bar(["Car", "Truck", "Bus", "Auto"], [10,20,30,40]) -- Categorical + numeric data
horizontal bar plot
ax1.barh(["Car", "Truck", "Bus", "Auto"], [10,20,30,40]) -- Categorical + numeric data
histogram
ax1.hist(X, bin = 50)
pie chart
ax1.pie([10,20,30], labels=["car", "bus", "truck"])
scatter plot
ax1.scatter(x,y, marker="^", color="g")
Box/Violon plot
ax1.boxplot(X)
ax1.violinplot(X)